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Abstract. The densities of states for the periodic Anderson model are eduated by 
meansofanon-standardperturbati~nerpansionin the kinetic termoftheconduction 
electrons. The calculations are performed at finite temperature, taking into account 
in an exact way the effect of the on-site Coulomb repulsion U and the hybridization 
coupling V.  We reproduce most of the properties that are usually expected for the 
correlated electrons, especially the peaks in the density of states at energies cy and 
cf + U  and the double peak structure with the hybridhtion gap in the region amund 
the chemical potential. 

1. Introduction 

The physics of systems containing isolated magnetic impurities is an active field of 
research. Indeed, the striking anomalies shown by these systems, especially in the 
response functions such as resistivity, susceptibility and specific heat, still cannot 
be completely reproduced by suitable mathematical models [I]. Besides, one of the 
essential properties of these systems, i.e. the existence of strong electronic correlations, 
seems to play a fundamental role in the phenomenon of high T, superconductivity [2]. 

It is known that the best experimental realization of these systems is obtained by 
diluting rare earth or actinide atoms in a host metal. This is due to the fact that 
the magnetic moments of these ions are generated by inner core 4f (rare earth) or 5f 
(actinide) shells which retain their atomic character when the atom is implanted into 
a metal. 

The resulting compounds show a large variety of behaviours which are not easy to 
interpret in terms of a unique underlying interaction mechanism. Depending on their 
properties, these compounds are usually divided in two large classes: the intermediate 
valence (IV) systems (mainly rare earth compounds) and the heavy fermions (HF) 
systems (mainly actinide compounds), which show different physical responses which 
in some cases are quite remarkable. It is worth recalling, for instance, that a few HF 
compounds even become superconductors at very low temperatures [3]. 

In spite of that, it now seems clear that the behaviour of Iv and HF systems is 
controlled by the same interactions in different parameter regimes. This would allow 
the use of a unique theoretical model for both kinds of system. 

For a theoretical analysis there are two basic features that must be taken into ac- 
count. The first one is the experimental evidence that two f-electrons belonging to the 
same ion experience a very high Coulomb repulsion because of their strong localiza- 
tion; this implies that the multi-occupancy of an f-level is energetically unfavourahle. 
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The other one is the fact that in most of these compounds the configuration with n 
f-electrons and n - 1 f-electrons plus one electron in the conduction band are nearly 
degenerate; this gives rise to the phenomenon of hybridization corresponding to the 
possibility of transitions from f-states into the band and sice-versa. 

Bearing this in mind, these compounds can be idealiied as systems of uncorrelated 
conduction electrons hybridizing with highly correlated electrons localized at the same 
lattice sites. This description is similar to the one provided by the periodic version of 
the single impurity Andersoii model [4]. 

As is well known, this model cannot be solved exactly unless one of the following 
limits is considered: 

(a) zero hybridization energy: the model is exactly solvable because the conduction 
and localized electrons behave as independent systems; 

(b) zero on-site correlation energy: the absence of many-body correlations allows 
the diagonalization of the Hamiltonian by means of a suitable canonical transforma- 
tion; or 

(c) vanishing conduction bandwidth: the model is again exactly solvable because 
different sites are not coupled. 

Although the results obtained by solving the model in these limits are non-physical, 
they have often been used as zeroth-order approximations in perturbative approaches. 

We recall, for instance, a perturbation expansion with respect to the on-site 
Coulomb repulsion (usually denoted by U), which makes use of the determinant per- 
turbation expansion in the form first introduced by Yosida and Yamada [SI. In this 
approach one has the advantage that the Wick theorem holds and the Feynman dia- 
gram method can be used. 

However, in most of the rare earth and actinide compounds which are usu- 
ally studied the correlation energy U is much larger than the impurity level width 
r = *Vzp(EF)  (p(E,) is the conduction electrons’ density of states at the Fermi 
level), which is a measure of the hybridization strength. Therefore, in spite of some 
reliable results obtained within the framework of the previously mentioned approach, 
a perturbative expansion with respect to the hybridization coupling V seems to be 
more realistic. 

In this case, however, the presence of the on-site Coulomb repulsion term in the 
unperturbed Hamiltonian forbids the application of the Wick theorem [6], so that the 
standard Feynman diagram technique cannot be used. 

In order to deal with this problem, many ingenious non-standard methods have 
been proposed, among which for brevity we only recall the diagrammatic expansion 
developed by Keiter and Kimball[7] (a summary of other techniques can be found in 

In this paper we propose an approach based on a perturbation expansion in the 
conduction electrons’kinetic term. The ‘free’ Green functions, which exactly take into 
account the effect of both the hybridization and the on-site Coulomb repulsion, have 
been calculated by means of a path integral technique developed in [SI. The full 
propagators have then been expressed in terms of the free ones by means of a suitable 
approximate Dyson equation [9]. We stress that our calculations are performed at 
finite temperature and for finite values of the correlation energy U. 

In our opinion, the main properties of systems with magnetic impurities in which 
band effects are not very relevant can be successfully investigated within the framework 
of the approach presented here. This could be the case, for instance, for the HF 
system in normal phase, the properties of which seem to be strongly dependent on 

Czycholl [l]). 
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the behaviour of the nearly localized f-electrons, rather than on that of the conduction 
electrons. 

In section 2 we specify the model and the approximate Dyson equation used to 
evaluate of the full propagators. The corresponding densities of states (DOSS) are 
studied in section 3 as functions of the temperature and the parameters of the theory. 

2. The model 

Let us study the periodic Anderson Hamiltonian 

where 

i,.J 

Here H ,  is the Hamiltonian of a set of localized electrons with a strong Coulomb 
repulsion U at the same site, H ,  describes a system of uncorrelated itinerant electrons 
and H ,  is the term accounting for the hybridization between localized and conduction 
states. Standard second quantization notation is used, with the operators f and c 
referring to the localized and conduction electrons, respectively. 

We introduce a perturbative approach regarding the conduction electron kinetic 
term H ,  as the perturbation H ,  which in turn implies 

Ho = Hf + H f c .  (3) 

The temperature Green functions of the full Hamiltonian are obtained by means of 
the following Dyson equation in (b,w,)-space (U, is the Matsubara frequency) 

~ ( b , ~ ” ) = ~ O ( w ” ) + ~ ( ~ ” ) ~ ( b , ~ ” ) ~ ( b , ~ ” j .  ( 4 )  

Here 

Gij ab (7 - 7‘) = -Tr[e-BHui(~)bj(r’)] - (T[o i (~ )b j (7 ’ ) ] )  
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(i and j are site indices). co(wv) is the unperturbed matrix propagator, showing 
no dependence on 12 because of the absence of a band of finite width in X,. The 
self-energy matrix g(k,wV) is assumed to be 

0 0  
(7) 

As the Wick theorem cannot be applied, equation (4) with self-energy (7) must be 
regarded as an approximation. It is exact in the limit Ir -+ 0: in this case every n- 
point unperturbed Green function can be factorized by use of the Wick theorem and 
equation (4) is a consequence of this factorization. 

Nonetheless, we are confident that this approximation is not as drastic as it could 
appear. Indeed, the fluctuations neglected in factorizing the unperturbed propagators 
can be expected to be small in our approach, because they are fluctuations around 
mean values computed by taking exactly into account the effect of the largest term in 
the Hamiltonian, the correlation energy U. For a better investigation of this point, we 
have also explicitly evaluated the contributions neglected in factorizing the four-point 
free propagators in terms of two-point free ones. Preliminary results seem to indicate 
that for physical choices of the parameters our approximation is a good one. 

We point out that the same assumption on the form of the self-energy can be found 
in a similar context in [IO] for zero-temperature calculations and in [ll] at T # 0. 

Returning to equation (4), we see that from assumption (7) we obtain the following 
equations 

Gt~(k,w,) = G h )  +~*Gc(w, )Gdhw, )  ( 8 4  

These equations have been used to evaluate the full propagators starting from the 
results given in [12], where the Green functions for the Hamiltonian (3) have been ex- 
actly computed at finite temperature. The DOSS for localized and conduction electrons 
have then been obtained from the well-known relationships 

1 
pr(w)=-- -CGGR(k , iw, -+w+ir l )  

?rN k 

Instead of specifying the form of the energy spectrum, we 
assuming a parabolic DOS for the unperturbed conduction electrons [lo, 111: 

we computed pr and pc 

(0 otherwise 

where W is the half-width of the conduction band. 



Densifies of slates in the periodac Anderson model 3723 

3. Results and discussion 

The DOSS have been evaluated as functions of the energy for different choices of the 
temperature and the parameters V, zf and U. The chemical potential has been fixed 
in such a way as to have two electrons per site. All the energy values are measured 
with respect to W .  

The general structure of the DOS for localized electrons is the one showed, for 
instance, in figure 3. We always find two peaks, one around zf and one around + U, 
together with two other peaks in the region of the chemical potential, separated by a 
small hybridization gap. Having fixed an even number of electrons per site, we always 
find the chemical potential falling in this gap. This result is in agreement with the 
one obtained by Martin and Allen [U]. 

We have evaluated the DOS for localized and conduction electrons varying the 
parameters for two fixed positions of the f-level, well below the conduction band 
( q / W  = -2) and inside it (q /W = -0.5) (note that in the figures given here different 
scales are used). 

4 . 8  

3.6 

2.k- 

1.2 

- 

- 

- 

E/W 

.. .. I. ._ .. ._ .. .. 

C I  1_ 

0.30 0.so 

Figure 1. DOSS of localized (hdl curve) and coaduction (broken curve) electrons for 
ct/W = -2, V/W = 0.2, U/W = 3 and keT/W = 0.00086 (the peak war cy is not 
shown). 

In figures 1-4 two values of the hybridization are considered (V/W = 0.2 and 0.3), 
the temperature being fixed at k,T/W = 0.00086 (for W = 1 eV this corresponds to 
T = 10 K). An inspection of the figures clearly shows that an increase in V always 
makes the f-peaks lower, wider and further apart. It is interesting to note (see figures 
2 and 4) that when the f-level is in the conduction band a second gap within the 
corresponding peak in f-DOS is created (the same gap is also found in the c-DOS). 
Owing to the high value of the chosen Coulomb repulsion (U/W = 3), in these cases 
we always find f and c occupation numbers very close to one, regardless of the position 
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E/W 

Figure 2. Same aa in figure 1, with  q/W = -0.5 (the peak near q + U is not 
shown). 

of the f-level. Referring to figures 1-4, we find for (nI) the values 1.014, 0.952, 1.034 
and 0.892, respectively. 

3.2 - 

2 . 4  - 

1.6  - 

0.8 - 

0.0 - 
-2.51 

E/W 
Figure 3. Same as in figure 1, with V/W = 0.3. 
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E/W 

Figure 4. Same as in figure 2, with  V / W  = 0.3 (the peak near tf + U is not shown). 

Figure 5. Same 85 in figure 1, with U/W = 1.5, 

Figure 5 shows the DOSS for the same choice of parameters as in figure 1, the only 
difference being a lower value for the correlation energy (U/W = 1.5). We see that 
for ef = -2 a decrease in U leads on one hand to a strong reduction in the f-peaks at 
cf and er + U; and on the other hand to a broadening of the double peak structure 
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around the chemical potential. The low values of both U and er + U make it easier for 
an electron to go into an f-state already occupied, so that the site occupation is almost 
completely distributed over the high and wide f-peak on the left of the hybridization 
gap (we obtain in this case (nr) = 1.610). 

This trend is enhanced when we lower U further. At U/W = 1.1 (we have not 
given the diagram for brevity) the side f-peaks completely disappear whereas the 
central ones become very wide with an f-occupation equal to 1.803. 

In contrast, values of U/W higher than three do not substantially modify the DOSS, 
the main effect being only a narrowing of the f-peaks. This is easily explained, because 
high values of U tend to forbid the multi-occupancy of sites, so that the mobility of 
the f-electrons is strongly reduced. 

We have performed a similar analysis of the effect of U with the f-level inside the 
conduction band. We do not give the diagrams here because the DOS structure shown 
in figure 2 is not qualitatively altered by physically significant variations of U ,  We only 
find, as before, that the f-peaks are broadened by a decrease in U (and vice-versa), 
the f-occupation always remaining nearly equal to one. 

We have also studied the dependence of the hybridization gap width on the param- 
eters c f r  V and U. From figures 1-5 and the data  reported in table 1, we see that the 
gap becomes broader with increasing V and decreasing U. As far as the dependence 
on er is concerned, we find that the gap is an increasing function of er as long as U/W 
is greater than a certain value that we estimate to be about three. For smaller U the 
behaviour is no longer monotonic, as can be seen from the last set of data reported. 
Apart from this latter result, the general trend that can be inferred from table 1 is 
in good agreement with the zero-temperature results shown in [14]. Considering that 
our data  are expressed in bandwidth units, some of the values obtained are consistent 
with the measured ones, whicb are of the order of meV [15]. 

Table 1. (a)  The other parameters are: q/W = -0.5, U/W = 3, kBT/W = 
0.00086. ( 6 )  The otlierparanietersare: q /W = -2, V/W = 0 . 2 ,  k s T / W  = 0.00086. 
( c )  The other parameters are: V/W = 0.2, U/W = 3, kBT/W = 0.00086. ( d )  The 
other parameters me: V/W = 0.2, U/W = 2, kBT/W = 0.00086 

(a) (6) (C) (4 
V Gap U Gap (i Gap e l  Gap 

0.1 0.000 1.5 0.099 -2.0 0.014 - 2 . 0 ~  ~~ 0.000 
0.2 0.014 2.0 O.OG0 -1.3 0.015 -1.3 0.025 
0.3 0.025 3.0 0.014 -0.8 0.017 -0.8 0.023 
0.4 0.170 5.0 0.005 -0.5 0.025 -0.5 0.030 

Finally, in figure 6 we show the DOSS with the same parameters as in figure 2, but 
at a higher temperature (k,T/W = 0.02583; for IY = 1 eV this gives T = 300 K).  
We note that the location of the hybridization gap (and the chemical potential inside 
it) is only very slightly affected by an increase in the temperature (in figures 2 and 6 
EF/W is equal to 0.056 and 0.041, respectively). The main temperature effect consists 
in an increase in the number of the f-peaks, leaving the site occupation substantially 
unaltered. The inset in the figure shows that the f-DOS structure in the region around 
the chemical potential is much more complex than that reported in [ I l l .  This is an 
important result, because of the fundamental role played by the DOS structure in the 
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E/W 

Figure 6 .  Same as in figure 1, with I;BT/W = 0.02583 (the inset shows an en- 
largement of the region around the chemical potential; the peak near CI + U is not 
shown). 

proximity of the chemical potential in the determination of the physical properties of 
the system. 

We conclude the discussion of the results by pointing out that  these calculations 
were also performed by fixing the total number of particles per site equal to three. We 
always found the chemical potentials lie within the conduction band, to the right of 
the hybridization gap. 
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